

Genome editing and stem cell engineering for disease modeling

Adriana S. Beltran

Assistant Professor, Department of Pharmacology Director, Human Pluripotent Stem Cell Core Phone: (919) 537-3996 (office), (919) 537-3995 (lab) Email: <u>beltran@med.unc.edu</u> Website: <u>http://www.med.unc.edu/humanstemcellcore</u> The University of North Carolina at Chapel Hill

April 13, 2017

The human Pluripotent Stem Cell core (HPSCC) is committed to accelerating collaborative studies in stem cell biology

The HPSCC mission is to serve as the central platform of technical support for investigators seeking to work with human embryonic and pluripotent stem cells

Pluripotent stem cells

PROS

Limitless potential in regenerative medicine and disease

CONS

Rejection after transplantation Usage of human embryos to create them

Inducing a pluripotent state (iPS)

iPSC as patient-specific pre-clinical disease models

Tools for genome editing

Disadvantage:Difficult to designed and
Construct
Target site restrictionsLabor intense to construct
"T" requirement
Sensitive to 5'methylcytosinePAM requirement
Off-target concerns

Medical applications of iPS cells

Human pluripotent stem cell services

Cell derivation and characterization:

- IPSC generation and characterization
- hES/hiPS directed differentiation into specialized cell types
- hES/hiPS maintenance, expansion and banking

Genome engineering:

- Genome editing of mammalian cells (hESC, iPSC, CSC)
- Engineering effector molecules for gene regulation

Training in stem cell culture techniques

Source materials

Easy to reprogram

Blood: easy to obtain and easy to reprogramFibroblast: easy to obtain, frozen stock and expandableUrine: easiest to obtain, easy to reprogram, potential contamination

Comparison of IPSC derivation technology

>	Lentivirus	RNA		
		Sendai virus		
		Episomal vector		
	Adenovirus	Protein		
	Safety			
	-	Method		

Method	Integration	Efficiency	Cost
Retrovirus	Yes	0.001 - 0.01%	++
Lentivirus	Yes	0.001 - 0.01%	++
Adenoviral	Possible	0.0001 - 0.001%	++++
Sendai virus	No	0.01 - 1%	++++
Episomal	Possible	0.0001 - 0.01%	+
mRNA	No	>1%	++++
Protein	No	0.00001%	++++

Reprogramming blood to iPS cells using a integration-free method

Patients

iPSC colonies in Feeders

iPSCs feeder-free

Quality assurance: characterization Immunofluorescence of of iPSCs

pluripotency markersImage: Signal state stat

Karyotype

K	8	ŗ)]	1	b	ļſ
ir	ļł	ic	ç,	1)	11	١ç
1 3	11) , {			* *	B C
3,8	器 唐 20	21	22		(r	¥

Teratoma formation

Adriana Beltran, Bryan Richardson

Differentiation of hES and IPS into three germ layers

Ectoderm

NESTIN

Mesoderm SMA _______

Endoderm

Specific cell type differentiation

Neural differentiation timeline

Derivation of functional endothelial cells from iPSCs

Tube formation assay

Maintenance, expansion and banking of hES and hiPS cells

Embryonic stem cell lines distributed by the core: H1, H7 and H9 iPSC control lines

IMPORTANT:

hES lines acquired from the core must be checked for pluripotency every month and be karyotyped every 20 passages.

Human pluripotent stem cell services

Genome engineering:

- Genome editing of mammalian cells (hESC, iPSC, CS)
- Engineering effector molecules for gene regulation

Fast and easy genome engineering with CRIPSR/Cas9

Fig. 1. Genome editing in human cells using an engineered type II CRISPR system. (A) RNA-guided gene tar

Genome editing possibilities

Genome editing using CRISPR/Cas9 based technologies are applied to any mammalian cell type (hES, hIPS and cancer cell lines).

•CRISPR-mediated gene knock-out.

•CRISPR-mediated gene knock-in.

•CRISPR-mediated point mutation introduction and/or repair to create isogenic cell lines.

Genome editing timeline

CRIPSR mediated gene KO Editing the CCM3 locus

Revencu, et al., J Med Genet, 2006

CRIPSR mediated gene KO

<u>CRIPSR mediated gene KO</u> High efficient double allele KOs

20% efficiency

40% efficiency

<u>CRIPSR mediated gene KO</u> deletion of large genomic regions

Enhancer Remodeling During Adaptive Bypass to MEK Inhibition Is Attenuated by Pharmacological Targeting of the P-TEFb Complex

Jon S. Zawistowski, Samantha M. Bevill, Daniel R. Goulet, Timothy J. Stuhlmiller, Adriana S. Beltran, Jose F. Olivares-Quintero, Darshan Singh, Noah Sciaky, Joel S. Parker, Naim U. Rashid, Xin Chen, James S. Duncan, Martin C. Whittle, Steven P. Angus, Sara Hanna Velarde, Brian T. Golitz, Xiaping He, Charlene Santos, David B. Darr, Kristalyn Gallagher, Lee M. Graves, Charles M. Perou, Lisa A. Carey, H. Shelton Earp, and Gary L. Johnson

DOI: 10.1158/2159-8290.CD-16-0653 Published January 2017

CRIPSR mediated gene Kl Fluorescent reporter

HCMEC-CCM-Yept

CCM-YPET reporter real-time imaging

Engineering effector molecules for gene regulation

Re-activation of a dormant tumor suppressor gene *maspin* by designed transcription factors

A Beltran¹, S Parikh¹, Y Liu¹, BD Cuevas¹, GL Johnson¹, BW Futscher² and P Blancafort¹

Targeted silencing of the oncogenic transcription factor SOX2 in breast cancer

Sabine Stolzenburg^{1,2}, Marianne G. Rots¹, Adriana S. Beltran², Ashley G. Rivenbark^{2,3}, Xinni Yuan², Haili Qian⁴, Brian D. Strahl^{3,5} and Pilar Blancafort^{2,5,*}

ORIGINAL ARTICLE Stable oncogenic silencing *in vivo* by programmable and targeted *de novo* DNA methylation in breast cancer

Comparison of Cas9 activators in multiple species

Alejandro Chavez^{1-3,11}, Marcelle Tuttle^{1,11}, Benjamin W Pruitt¹, Ben Ewen-Campen³, Raj Chari³, Dmitry Ter-Ovanesyan^{1,3}, Sabina J Haque^{4,5}, Ryan J Cecchi¹, Emma J K Kowal¹, Joanna Buchthal¹, Benjamin E Housden³, Norbert Perrimon^{3,6}, James J Collins^{1,7-10} & George Church^{1,3}

Highly specific epigenome editing by CRISPR-Cas9 repressors for silencing of distal regulatory elements

Pratiksha I Thakore^{1,2}, Anthony M D'Ippolito^{2,3}, Lingyun Song^{2,4}, Alexias Safi^{2,4}, Nishkala K Shivakumar¹, Ami M Kabadi^{1,2}, Timothy E Reddy^{2,5}, Gregory E Crawford^{2,4} & Charles A Gersbach^{1,2,6}

Training in stem cell culture techniques

The Stem Cell Core Facility offers a one-to-one training course in basic human stem cell culture techniques.

- Introduction to stem cell biology
- Morphology of hES and hiPSCs
- Media preparation
- Feeder preparation
- Feeder-free ECM coating
- Passaging hES and hiPSCs by enzyme and manual picking
- Freezing/thawing hiPSCs

Available technology

Veriti[®] 96-Well Fast Thermal Cycler

Neon Electroporator

Qubit 3.0 Fluorometer

Going forward

Collaborative research Expand technological footprint Build long term relationships

The HPSC core is tightly coupled to the success of its users and collaborators

Take home message

The Human stem cell core can support your stem cell studies by:

- 1. Reprogramming somatic cells into iPS cells.
- 2. Differentiate hES and iPS cells into specialized cell types.
- 3. Develop protocols for directed differentiation.
- 4. Design and engineer gene editing tools for:
 - Making isogenic iPS cells.
 - Gene knockouts.
 - Deletion of long enhancers and/or short regulatory elements.
 - Making fluorescent reporter lines.
- 5. Design and engineer synthetic transcription factors for gene regulation

Thank you