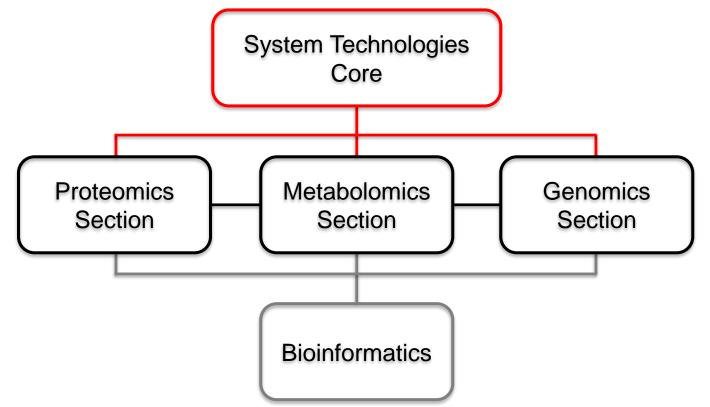
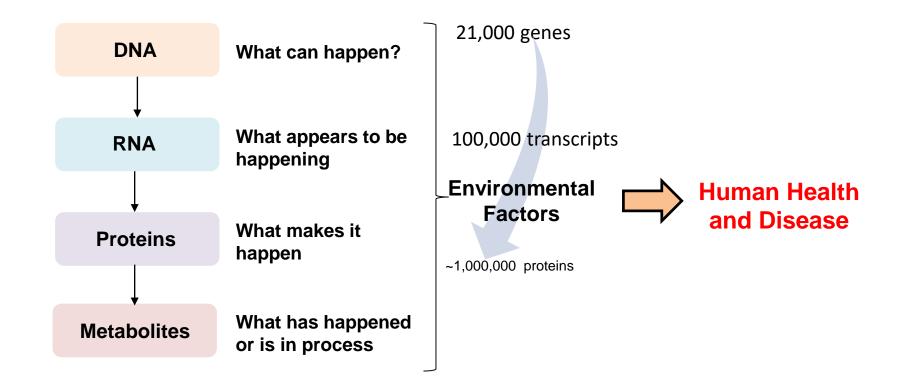


Center for Human Health and the Environment

Proteomics Section of the Systems Technologies Core

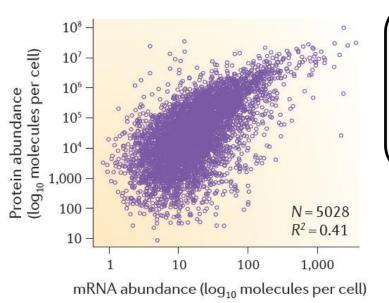
Michael S. Bereman, PhD 919.515.8520 michaelbereman@ncsu.edu


Jeffrey R. Enders, PhD 919.515.3290 jrenders@ncsu.edu

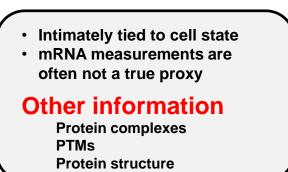


Systems Technology Core

Molecular Services/Expertise with Integrated Bioinformatic Support

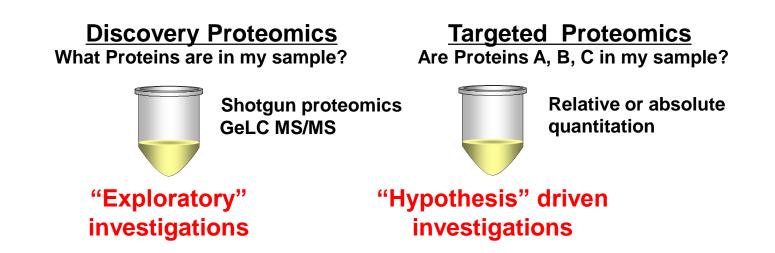


Central Dogma of Biology



Why Measure Proteins? – Molecules That Do Work

Christine Vogel and Edward M. Marcotte, Nature Review Genetics, 2012

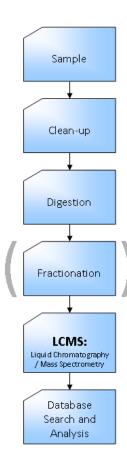


Mouse fibroblast cells

Proteomic Experiments

"Proteomics is the identities, quantities, structures, and biochemical and cellular functions of <u>all proteins in an organism</u>, organ, or organelle, and how they vary in space, time, and physiological state" Mol. Cell Proteomics 1:763:780 2002

NC STATE UNIVERSITY


What to expect

- Routinely identify 2000-3000 proteins in a single injection sample dependent
- Sensitive and precise relative quantification of a select group of proteins
 - Targeted proteomics
- ID of post-translational modifications upon enrichment
 - Phosphorylation
 - Ubiquitination
- Identification of protein interactions (Co-IP)
 - Background
- Limitations
 - Protein abundance
 - Available databases
 - Reliable quantitation
 - Data mining

NC STATE UNIVERSITY

CHHE Proteomics advises

- Experimental design
 - Number of replicates
 - Buffers
 - Extraction/Detergents
- Sample Preparation
 - Clean up/ Digestion
- Data Acquisition
 - LC MS/MS
- Data Processing and Analysis
 - Database search, results, pathway analysis

CHHE Proteomics Center : Conclusions

- Proteomics via LC MS/MS is a powerful technology used to measure proteins in complex mixtures
- Proteomics Section Mission is to provide expertise in experimental design, sample preparation, and analyses to members of CHHE
- Funding available for Proteomics through CHHE Seed Funds https://chhe.research.ncsu.edu/about/contact/seed-projects/
- Make an appointment to discuss your project today!

INSTRUMENTATION

Thermo Fisher Scientific TSQ Quantiva™ Triple Quadrupole Mass Spectrometer

- Low-resolution instrument capable of quantitative analyses of peptides and small molecules
- Example studies:
 - Quantitative proteomic assay to determine absolute concentrations of a particular protein in a given matrix
 - Quantitation of pesticides in water/blood/urine
 - Measuring clearance of a chemical from culture media
 - Quantitating drug and metabolites in biological fluid

Thermo Fisher Scientific Q Exactive[™] HF Hybrid Quadrupole-Orbitrap[™] Mass Spectrometer

- High resolution instrument capable of discovery based analyses (e.g., discovery proteomics, untargeted metabolomics, etc)
- Example studies:
 - Determining protein expression profile changes as a result of chemical insult in order to elicit a toxicological mechanism of action
 - Co-immunoprecipitation workflow to determine associated proteins/complexes

Thermo Fisher Scientific iCAP™ RQ ICP-MS

- Inductively couple plasma instrument capable of elemental analysis (e.g., metals)
- Example studies:
 - Tracking total cadmium in various organs of model organism
 - Total elemental analysis of food samples

